Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MTLM: Incorporating Bidirectional Text Information to Enhance Language Model Training in Speech Recognition Systems (2502.10058v2)

Published 14 Feb 2025 in cs.CL and eess.AS

Abstract: Automatic speech recognition (ASR) systems normally consist of an acoustic model (AM) and a LLM (LM). The acoustic model estimates the probability distribution of text given the input speech, while the LLM calibrates this distribution toward a specific knowledge domain to produce the final transcription. Traditional ASR-specific LMs are typically trained in a unidirectional (left-to-right) manner to align with autoregressive decoding. However, this restricts the model from leveraging the right-side context during training, limiting its representational capacity. In this work, we propose MTLM, a novel training paradigm that unifies unidirectional and bidirectional manners through 3 training objectives: ULM, BMLM, and UMLM. This approach enhances the LM's ability to capture richer linguistic patterns from both left and right contexts while preserving compatibility with standard ASR autoregressive decoding methods. As a result, the MTLM model not only enhances the ASR system's performance but also support multiple decoding strategies, including shallow fusion, unidirectional/bidirectional n-best rescoring. Experiments on the LibriSpeech dataset show that MTLM consistently outperforms unidirectional training across multiple decoding strategies, highlighting its effectiveness and flexibility in ASR applications.

Summary

We haven't generated a summary for this paper yet.