Correlating neural and symbolic representations of language (1905.06401v2)
Abstract: Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representational Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.