Papers
Topics
Authors
Recent
2000 character limit reached

Towards a constructive simplicial model of Univalent Foundations

Published 15 May 2019 in math.CT and math.LO | (1905.06281v3)

Abstract: We provide a partial solution to the problem of defining a constructive version of Voevodsky's simplicial model of univalent foundations. For this, we prove constructive counterparts of the necessary results of simplicial homotopy theory, building on the constructive version of the Kan-Quillen model structure established by the second-named author. In particular, we show that dependent products along fibrations with cofibrant domains preserve fibrations, establish the weak equivalence extension property for weak equivalences between fibrations with cofibrant domain and define a univalent classifying fibration for small fibrations between bifibrant objects. These results allow us to define a comprehension category supporting identity types, $\Sigma$-types, $\Pi$-types and a univalent universe, leaving only a coherence question to be addressed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.