Papers
Topics
Authors
Recent
Search
2000 character limit reached

Combining Representation Learning with Tensor Factorization for Risk Factor Analysis - an application to Epilepsy and Alzheimer's disease

Published 14 May 2019 in stat.AP and cs.IR | (1905.05830v1)

Abstract: Existing studies consider Alzheimer's disease (AD) a comorbidity of epilepsy, but also recognize epilepsy to occur more frequently in patients with AD than those without. The goal of this paper is to understand the relationship between epilepsy and AD by studying causal relations among subgroups of epilepsy patients. We develop an approach combining representation learning with tensor factorization to provide an in-depth analysis of the risk factors among epilepsy patients for AD. An epilepsy-AD cohort of ~600,000 patients were extracted from Cerner Health Facts data (50M patients). Our experimental results not only suggested a causal relationship between epilepsy and later onset of AD ( p = 1.92e-51), but also identified five epilepsy subgroups with distinct phenotypic patterns leading to AD. While such findings are preliminary, the proposed method combining representation learning with tensor factorization seems to be an effective approach for risk factor analysis.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.