Papers
Topics
Authors
Recent
2000 character limit reached

Gradient methods exploiting spectral properties (1905.03870v1)

Published 9 May 2019 in math.OC

Abstract: We propose a new stepsize for the gradient method. It is shown that this new stepsize will converge to the reciprocal of the largest eigenvalue of the Hessian, when Dai-Yang's asymptotic optimal gradient method (Computational Optimization and Applications, 2006, 33(1): 73-88) is applied for minimizing quadratic objective functions. Based on this spectral property, we develop a monotone gradient method that takes a certain number of steps using the asymptotically optimal stepsize by Dai and Yang, and then follows by some short steps associated with this new stepsize. By employing one step retard of the asymptotic optimal stepsize, a nonmonotone variant of this method is also proposed. Under mild conditions, $R$-linear convergence of the proposed methods is established for minimizing quadratic functions. In addition, by combining gradient projection techniques and adaptive nonmonotone line search, we further extend those methods for general bound constrained optimization. Two variants of gradient projection methods combining with the Barzilai-Borwein stepsizes are also proposed. Our numerical experiments on both quadratic and bound constrained optimization indicate that the new proposed strategies and methods are very effective.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.