Strong Negative Type in Spheres (1905.02863v3)
Abstract: It is known that spheres have negative type, but only subsets with at most one pair of antipodal points have strict negative type. These are conditions on the (angular) distances within any finite subset of points. We show that subsets with at most one pair of antipodal points have strong negative type, a condition on every probability distribution of points. This implies that the function of expected distances to points determines uniquely the probability measure on such a set. It also implies that the distance covariance test for stochastic independence, introduced by Sz\'ekely, Rizzo and Bakirov, is consistent against all alternatives in such sets. Similarly, it allows tests of goodness of fit, equality of distributions, and hierarchical clustering with angular distances. We prove this by showing an analogue of the Cram\'er--Wold theorem.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.