Papers
Topics
Authors
Recent
2000 character limit reached

Strong Negative Type in Spheres (1905.02863v3)

Published 8 May 2019 in math.MG

Abstract: It is known that spheres have negative type, but only subsets with at most one pair of antipodal points have strict negative type. These are conditions on the (angular) distances within any finite subset of points. We show that subsets with at most one pair of antipodal points have strong negative type, a condition on every probability distribution of points. This implies that the function of expected distances to points determines uniquely the probability measure on such a set. It also implies that the distance covariance test for stochastic independence, introduced by Sz\'ekely, Rizzo and Bakirov, is consistent against all alternatives in such sets. Similarly, it allows tests of goodness of fit, equality of distributions, and hierarchical clustering with angular distances. We prove this by showing an analogue of the Cram\'er--Wold theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.