Papers
Topics
Authors
Recent
2000 character limit reached

Failure of the Brauer-Manin principle for a simply connected fourfold over a global function field, via orbifold Mordell (1905.02795v2)

Published 7 May 2019 in math.AG and math.NT

Abstract: Almost one decade ago, Poonen constructed the first examples of algebraic varieties over global fields for which Skorobogatov's etale Brauer-Manin obstruction does not explain the failure of the Hasse principle. By now, several constructions are known, but they all share common geometric features such as large fundamental groups. In this paper, we construct simply connected fourfolds over global fields of positive characteristic for which the Brauer-Manin machinery fails. Contrary to earlier work in this direction, our construction does not rely on major conjectures. Instead, we establish a new diophantine result of independent interest: a Mordell-type theorem for Campana's "geometric orbifolds" over function fields of positive characteristic. Along the way, we also construct the first example of simply connected surface of general type over a global field with a non-empty, but non-Zariski dense set of rational points.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.