Orthodiagonal anti-involutive Kokotsakis polyhedra (1905.02153v1)
Abstract: We study the properties of Kokotsakis polyhedra of orthodiagonal anti-involutive type. Stachel conjectured that a certain resultant connected to a polynomial system describing flexion of a Kokotsakis polyhedron must be reducible. Izmestiev \cite{izmestiev2016classification} showed that a polyhedron of the orthodiagonal anti-involutive type is the only possible candidate to disprove Stachel's conjecture. We show that the corresponding resultant is reducible, thereby confirming the conjecture. We do it in two ways: by factorization of the corresponding resultant and providing a simple geometric proof. We describe the space of parameters for which such a polyhedron exists and show that this space is non-empty. We show that a Kokotsakis polyhedron of orthodiagonal anti-involutive type is flexible and give explicit parameterizations in elementary functions and in elliptic functions of its flexion.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.