2000 character limit reached
Lasso under Multi-way Clustering: Estimation and Post-selection Inference (1905.02107v3)
Published 6 May 2019 in econ.EM
Abstract: This paper studies high-dimensional regression models with lasso when data is sampled under multi-way clustering. First, we establish convergence rates for the lasso and post-lasso estimators. Second, we propose a novel inference method based on a post-double-selection procedure and show its asymptotic validity. Our procedure can be easily implemented with existing statistical packages. Simulation results demonstrate that the proposed procedure works well in finite sample. We illustrate the proposed method with a couple of empirical applications to development and growth economics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.