Papers
Topics
Authors
Recent
2000 character limit reached

PhaseDNN - A Parallel Phase Shift Deep Neural Network for Adaptive Wideband Learning (1905.01389v2)

Published 3 May 2019 in eess.SP, cs.LG, and stat.ML

Abstract: In this paper, we propose a phase shift deep neural network (PhaseDNN) which provides a wideband convergence in approximating a high dimensional function during its training of the network. The PhaseDNN utilizes the fact that many DNN achieves convergence in the low frequency range first, thus, a series of moderately-sized of DNNs are constructed and trained in parallel for ranges of higher frequencies. With the help of phase shifts in the frequency domain, implemented through a simple phase factor multiplication on the training data, each DNN in the series will be trained to approximate the target function's higher frequency content over a specific range. Due to the phase shift, each DNN achieves the speed of convergence as in the low frequency range. As a result, the proposed PhaseDNN system is able to convert wideband frequency learning to low frequency learning, thus allowing a uniform learning to wideband high dimensional functions with frequency adaptive training. Numerical results have demonstrated the capability of PhaseDNN in learning information of a target function from low to high frequency uniformly.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.