Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

In Defense of Synthetic Data (1905.01351v1)

Published 3 May 2019 in cs.DB

Abstract: Synthetic datasets have long been thought of as second-rate, to be used only when "real" data collected directly from the real world is unavailable. But this perspective assumes that raw data is clean, unbiased, and trustworthy, which it rarely is. Moreover, the benefits of synthetic data for privacy and for bias correction are becoming increasingly important in any domain that works with people. Curated synthetic datasets - synthetic data derived from minimal perturbations of real data - enable early stage product development and collaboration, protect privacy, afford reproducibility, increase dataset diversity in research, and protect disadvantaged groups from problematic inferences on the original data that reflects systematic discrimination. Rather than representing a departure from the true state of the world, in this paper we argue that properly generated synthetic data is a step towards responsible and equitable research and development of machine learning systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.