Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TriDepth: Triangular Patch-based Deep Depth Prediction (1905.01312v2)

Published 3 May 2019 in cs.CV

Abstract: We propose a novel and efficient representation for single-view depth estimation using Convolutional Neural Networks (CNNs). Point-cloud is generally used for CNN-based 3D scene reconstruction; however it has some drawbacks: (1) it is redundant as a representation for planar surfaces, and (2) no spatial relationships between points are available (e.g, texture and surface). As a more efficient representation, we introduce a triangular-patch-cloud, which represents the surface of the 3D structure using a set of triangular patches, and propose a CNN framework for its 3D structure estimation. In our framework, we create it by separating all the faces in a 2D mesh, which are determined adaptively from the input image, and estimate depths and normals of all the faces. Using a common RGBD-dataset, we show that our representation has a better or comparable performance than the existing point-cloud-based methods, although it has much less parameters.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.