The Poisson equation on Riemannian manifolds with weighted Poincaré inequality at infinity (1905.01012v1)
Abstract: We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincar\'e inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic manifolds with minimal positive Green's function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincar\'e inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.