Universal Block Tridiagonalization in B(H) and Beyond (1905.00823v2)
Abstract: For H a separable infinite dimensional complex Hilbert space, we prove that every B(H) operator has a basis with respect to which its matrix representation has a universal block tridiagonal form with block sizes given by a simple exponential formula independent of the operator. From this, such a matrix representation can be further sparsified to slightly sparser forms; it can lead to a direct sum of even sparser forms reflecting in part some of its reducing subspace structure; and in the case of operators without invariant subspaces (if any exists), it gives a plethora of sparser block tridiagonal representations. An extension to unbounded operators occurs for a certain domain of definition condition. Moreover this process gives rise to many different choices of block sizes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.