Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

High-dimensional variable selection via low-dimensional adaptive learning (1905.00105v3)

Published 17 Apr 2019 in stat.CO and stat.ME

Abstract: A stochastic search method, the so-called Adaptive Subspace (AdaSub) method, is proposed for variable selection in high-dimensional linear regression models. The method aims at finding the best model with respect to a certain model selection criterion and is based on the idea of adaptively solving low-dimensional sub-problems in order to provide a solution to the original high-dimensional problem. Any of the usual $\ell_0$-type model selection criteria can be used, such as Akaike's Information Criterion (AIC), the Bayesian Information Criterion (BIC) or the Extended BIC (EBIC), with the last being particularly suitable for high-dimensional cases. The limiting properties of the new algorithm are analysed and it is shown that, under certain conditions, AdaSub converges to the best model according to the considered criterion. In a simulation study, the performance of AdaSub is investigated in comparison to alternative methods. The effectiveness of the proposed method is illustrated via various simulated datasets and a high-dimensional real data example.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.