Survey of Dropout Methods for Deep Neural Networks
Abstract: Dropout methods are a family of stochastic techniques used in neural network training or inference that have generated significant research interest and are widely used in practice. They have been successfully applied in neural network regularization, model compression, and in measuring the uncertainty of neural network outputs. While original formulated for dense neural network layers, recent advances have made dropout methods also applicable to convolutional and recurrent neural network layers. This paper summarizes the history of dropout methods, their various applications, and current areas of research interest. Important proposed methods are described in additional detail.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.