Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Permutations from an arithmetic setting (1904.12920v2)

Published 29 Apr 2019 in math.NT and math.CO

Abstract: Let $m, n$ be positive integers such that $m>1$ divides $n$. In this paper, we introduce a special class of piecewise-affine permutations of the finite set $[1, n]:={1, \ldots, n}$ with the property that the reduction $\pmod m$ of $m$ consecutive elements in any of its cycles is, up to a cyclic shift, a fixed permutation of $[1, m]$. Our main result provides the cycle decomposition of such permutations. We further show that such permutations give rise to permutations of finite fields. In particular, we explicitly obtain classes of permutation polynomials of finite fields whose cycle decomposition and its inverse are explicitly given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.