Event Driven Fusion (1904.11520v3)
Abstract: This paper presents a technique which exploits the occurrence of certain events as observed by different sensors, to detect and classify objects. This technique explores the extent of dependence between features being observed by the sensors, and generates more informed probability distributions over the events. Provided some additional information about the features of the object, this fusion technique can outperform other existing decision level fusion approaches that may not take into account the relationship between different features. Furthermore, this paper addresses the issue of coping with damaged sensors when using the model, by learning a hidden space between sensor modalities which can be exploited to safeguard detection performance.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.