Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A distribution-free smoothed combination method of biomarkers to improve diagnostic accuracy in multi-category classification (1904.10046v1)

Published 22 Apr 2019 in stat.ME and stat.AP

Abstract: Results from multiple diagnostic tests are usually combined to improve the overall diagnostic accuracy. For binary classification, maximization of the empirical estimate of the area under the receiver operating characteristic (ROC) curve is widely adopted to produce the optimal linear combination of multiple biomarkers. In the presence of large number of biomarkers, this method proves to be computationally expensive and difficult to implement since it involves maximization of a discontinuous, non-smooth function for which gradient-based methods cannot be used directly. Complexity of this problem increases when the classification problem becomes multi-category. In this article, we develop a linear combination method that maximizes a smooth approximation of the empirical Hypervolume Under Manifolds (HUM) for multi-category outcome. We approximate HUM by replacing the indicator function with the sigmoid function or normal cumulative distribution function (CDF). With the above smooth approximations, efficient gradient-based algorithms can be employed to obtain better solution with less computing time. We show that under some regularity conditions, the proposed method yields consistent estimates of the coefficient parameters. We also derive the asymptotic normality of the coefficient estimates. We conduct extensive simulations to examine our methods. Under different simulation scenarios, the proposed methods are compared with other existing methods and are shown to outperform them in terms of diagnostic accuracy. The proposed method is illustrated using two real medical data sets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube