Genomics models in radiotherapy: from mechanistic to machine learning (1904.09662v3)
Abstract: Machine learning provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While machine learning is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data towards questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts towards genomically-guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of machine learning to create predictive models for radiogenomics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.