2000 character limit reached
Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations (1904.09640v1)
Published 21 Apr 2019 in math.AP
Abstract: A nonlinear Schr\"odinger equation (NLS) on a periodic box can be discretized as a discrete nonlinear Schr\"odinger equation (DNLS) on a periodic cubic lattice, which is a system of finitely many ordinary differential equations. We show that in two spatial dimensions, solutions to the DNLS converge strongly in $L2$ to those of the NLS as the grid size $h>0$ approaches zero. As a result, the effectiveness of the finite difference method (FDM) is justified for the two-dimensional periodic NLS.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.