A Parallel Bitstream Generator for Stochastic Computing
Abstract: Stochastic computing (SC) presents high error tolerance and low hardware cost, and has great potential in applications such as neural networks and image processing. However, the bitstream generator, which converts a binary number to bitstreams, occupies a large area and energy consumption, thus weakening the superiority of SC. In this paper, we propose a novel technique for generating bitstreams in parallel, which needs only one clock for conversion and significantly reduces the hardware cost. Synthesis results demonstrate that the proposed parallel bitstream generator improves 2.5x area and 712x energy consumption.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.