Papers
Topics
Authors
Recent
2000 character limit reached

Learning the Right Expansion-ordering Heuristics for Satisfiability Testing in OWL Reasoners

Published 20 Apr 2019 in cs.AI | (1904.09443v1)

Abstract: Web Ontology Language (OWL) reasoners are used to infer new logical relations from ontologies. While inferring new facts, these reasoners can be further optimized, e.g., by properly ordering disjuncts in disjunction expressions of ontologies for satisfiability testing of concepts. Different expansion-ordering heuristics have been developed for this purpose. The built-in heuristics in these reasoners determine the order for branches in search trees while each heuristic choice causes different effects for various ontologies depending on the ontologies' syntactic structure and probably other features as well. A learning-based approach that takes into account the features aims to select an appropriate expansion-ordering heuristic for each ontology. The proper choice is expected to accelerate the reasoning process for the reasoners. In this paper, the effect of our methodology is investigated on a well-known reasoner that is JFact. Our experiments show the average speedup by a factor of one to two orders of magnitude for satisfiability testing after applying learning methodology for selecting the right expansion-ordering heuristics.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.