Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A unified framework for notions of algebraic theory (1904.08541v2)

Published 18 Apr 2019 in math.CT and math.LO

Abstract: Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. The ubiquity of algebraic structures in mathematics and related fields has given rise to several variants of universal algebra, such as theories of symmetric operads, non-symmetric operads, generalised operads, PROPs, PROs, and monads. These variants of universal algebra are called notions of algebraic theory. In this paper, we develop a unified framework for them. The key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that algebraic theories correspond to monoid objects therein. To incorporate semantics, we introduce a categorical structure called metamodel, which formalises a definition of models of algebraic theories. We also define morphisms between notions of algebraic theory, which are a monoidal version of profunctors. Every strong monoidal functor gives rise to an adjoint pair of such morphisms, and provides a uniform method to establish isomorphisms between categories of models in different notions of algebraic theory. A general structure-semantics adjointness result and a double categorical universal property of categories of models are also shown.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.