Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Exploration with Tight Bayesian Plausibility Sets (1904.08528v1)

Published 17 Apr 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Optimism about the poorly understood states and actions is the main driving force of exploration for many provably-efficient reinforcement learning algorithms. We propose optimism in the face of sensible value functions (OFVF)- a novel data-driven Bayesian algorithm to constructing Plausibility sets for MDPs to explore robustly minimizing the worst case exploration cost. The method computes policies with tighter optimistic estimates for exploration by introducing two new ideas. First, it is based on Bayesian posterior distributions rather than distribution-free bounds. Second, OFVF does not construct plausibility sets as simple confidence intervals. Confidence intervals as plausibility sets are a sufficient but not a necessary condition. OFVF uses the structure of the value function to optimize the location and shape of the plausibility set to guarantee upper bounds directly without necessarily enforcing the requirement for the set to be a confidence interval. OFVF proceeds in an episodic manner, where the duration of the episode is fixed and known. Our algorithm is inherently Bayesian and can leverage prior information. Our theoretical analysis shows the robustness of OFVF, and the empirical results demonstrate its practical promise.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.