Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Conformal symmetries in generalised Vaidya spacetimes (1904.08120v1)

Published 17 Apr 2019 in gr-qc

Abstract: In this paper we excavate, for the first time, the most general class of conformal Killing vectors, that lies in the two dimensional subspace described by the null and radial co-ordinates, that are admitted by the generalised Vaidya geometry. Subsequently we find the most general class of generalised Vaidya mass functions that give rise to such conformal symmetry. From our analysis it is clear that why some well known subclasses of generalised Vaidya geometry, like pure Vaidya or charged Vaidya solutions, admit only homothetic Killing vectors but no proper conformal Killing vectors with non constant conformal factors. We also study the gravitational collapse of generalised Vaidya spacetimes that posses proper conformal symmetry to show that if the central singularity is naked then in the vicinity of the central singularity the spacetime becomes almost self similar. This study definitely sheds new light on the geometrical properties of generalised Vaidya spacetimes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.