Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Existence of Geometric Ergodic Periodic Measures of Stochastic Differential Equations (1904.08091v1)

Published 17 Apr 2019 in math.PR

Abstract: Periodic measures are the time-periodic counterpart to invariant measures for dynamical systems and can be used to characterise the long-term periodic behaviour of stochastic systems. This paper gives sufficient conditions for the existence, uniqueness and geometric convergence of a periodic measure for time-periodic Markovian processes on a locally compact metric space in great generality. In particular, we apply these results in the context of time-periodic weakly dissipative stochastic differential equations, gradient stochastic differential equations as well as Langevin equations. We will establish the Fokker-Planck equation that the density of the periodic measure sufficiently and necessarily satisfies. Applications to physical problems shall be discussed with specific examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.