Papers
Topics
Authors
Recent
Search
2000 character limit reached

Residual or Gate? Towards Deeper Graph Neural Networks for Inductive Graph Representation Learning

Published 17 Apr 2019 in cs.LG, cs.SI, and stat.ML | (1904.08035v3)

Abstract: In this paper, we study the problem of node representation learning with graph neural networks. We present a graph neural network class named recurrent graph neural network (RGNN), that address the shortcomings of prior methods. By using recurrent units to capture the long-term dependency across layers, our methods can successfully identify important information during recursive neighborhood expansion. In our experiments, we show that our model class achieves state-of-the-art results on three benchmarks: the Pubmed, Reddit, and PPI network datasets. Our in-depth analyses also demonstrate that incorporating recurrent units is a simple yet effective method to prevent noisy information in graphs, which enables a deeper graph neural network.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.