Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable and Efficient Hypothesis Testing with Random Forests (1904.07830v3)

Published 16 Apr 2019 in stat.ME and stat.ML

Abstract: Throughout the last decade, random forests have established themselves as among the most accurate and popular supervised learning methods. While their black-box nature has made their mathematical analysis difficult, recent work has established important statistical properties like consistency and asymptotic normality by considering subsampling in lieu of bootstrapping. Though such results open the door to traditional inference procedures, all formal methods suggested thus far place severe restrictions on the testing framework and their computational overhead precludes their practical scientific use. Here we propose a permutation-style testing approach to formally assess feature significance. We establish asymptotic validity of the test via exchangeability arguments and show that the test maintains high power with orders of magnitude fewer computations. As importantly, the procedure scales easily to big data settings where large training and testing sets may be employed without the need to construct additional models. Simulations and applications to ecological data where random forests have recently shown promise are provided.

Citations (15)

Summary

We haven't generated a summary for this paper yet.