Papers
Topics
Authors
Recent
Search
2000 character limit reached

Formal Hypothesis Tests for Additive Structure in Random Forests

Published 7 Jun 2014 in stat.ML and stat.AP | (1406.1845v3)

Abstract: While statistical learning methods have proved powerful tools for predictive modeling, the black-box nature of the models they produce can severely limit their interpretability and the ability to conduct formal inference. However, the natural structure of ensemble learners like bagged trees and random forests has been shown to admit desirable asymptotic properties when base learners are built with proper subsamples. In this work, we demonstrate that by defining an appropriate grid structure on the covariate space, we may carry out formal hypothesis tests for both variable importance and underlying additive model structure. To our knowledge, these tests represent the first statistical tools for investigating the underlying regression structure in a context such as random forests. We develop notions of total and partial additivity and further demonstrate that testing can be carried out at no additional computational cost by estimating the variance within the process of constructing the ensemble. Furthermore, we propose a novel extension of these testing procedures utilizing random projections in order to allow for computationally efficient testing procedures that retain high power even when the grid size is much larger than that of the training set.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.