Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic Theory for Random Forests

Published 2 May 2014 in math.ST, stat.ML, and stat.TH | (1405.0352v2)

Abstract: Random forests have proven to be reliable predictive algorithms in many application areas. Not much is known, however, about the statistical properties of random forests. Several authors have established conditions under which their predictions are consistent, but these results do not provide practical estimates of random forest errors. In this paper, we analyze a random forest model based on subsampling, and show that random forest predictions are asymptotically normal provided that the subsample size s scales as s(n)/n = o(log(n){-d}), where n is the number of training examples and d is the number of features. Moreover, we show that the asymptotic variance can consistently be estimated using an infinitesimal jackknife for bagged ensembles recently proposed by Efron (2014). In other words, our results let us both characterize and estimate the error-distribution of random forest predictions, thus taking a step towards making random forests tools for statistical inference instead of just black-box predictive algorithms.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.