Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Discussion on Solving Partial Differential Equations using Neural Networks (1904.07200v1)

Published 15 Apr 2019 in cs.LG, math.NA, and stat.ML

Abstract: Can neural networks learn to solve partial differential equations (PDEs)? We investigate this question for two (systems of) PDEs, namely, the Poisson equation and the steady Navier--Stokes equations. The contributions of this paper are five-fold. (1) Numerical experiments show that small neural networks (< 500 learnable parameters) are able to accurately learn complex solutions for systems of partial differential equations. (2) It investigates the influence of random weight initialization on the quality of the neural network approximate solution and demonstrates how one can take advantage of this non-determinism using ensemble learning. (3) It investigates the suitability of the loss function used in this work. (4) It studies the benefits and drawbacks of solving (systems of) PDEs with neural networks compared to classical numerical methods. (5) It proposes an exhaustive list of possible directions of future work.

Citations (59)

Summary

We haven't generated a summary for this paper yet.