Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing and Mitigating the Difficulty in Training Physics-informed Artificial Neural Networks under Pointwise Constraints (2206.09321v2)

Published 19 Jun 2022 in cs.LG and physics.flu-dyn

Abstract: Neural networks can be used to learn the solution of partial differential equations (PDEs) on arbitrary domains without requiring a computational mesh. Common approaches integrate differential operators in training neural networks using a structured loss function. The most common training algorithm for neural networks is backpropagation which relies on the gradient of the loss function with respect to the parameters of the network. In this work, we characterize the difficulty of training neural networks on physics by investigating the impact of differential operators in corrupting the back propagated gradients. Particularly, we show that perturbations present in the output of a neural network model during early stages of training lead to higher levels of noise in a structured loss function that is composed of high-order differential operators. These perturbations consequently corrupt the back-propagated gradients and impede convergence. We mitigate this issue by introducing auxiliary flux parameters to obtain a system of first-order differential equations. We formulate a non-linear unconstrained optimization problem using the augmented Lagrangian method that properly constrains the boundary conditions and adaptively focus on regions of higher gradients that are difficult to learn. We apply our approach to learn the solution of various benchmark PDE problems and demonstrate orders of magnitude improvement over existing approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.