Bulk eigenvalue fluctuations of sparse random matrices (1904.07140v3)
Abstract: We consider a class of sparse random matrices, which includes the adjacency matrix of Erd\H{o}s-R\'enyi graphs $\mathcal G(N,p)$ for $p \in [N{\varepsilon-1},N{-\varepsilon}]$. We identify the joint limiting distributions of the eigenvalues away from 0 and the spectral edges. Our result indicates that unlike Wigner matrices, the eigenvalues of sparse matrices satisfy central limit theorems with normalization $N\sqrt{p}$. In addition, the eigenvalues fluctuate simultaneously: the correlation of two eigenvalues of the same/different sign is asymptotically 1/-1. We also prove CLTs for the eigenvalue counting function and trace of the resolvent at mesoscopic scales.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.