Papers
Topics
Authors
Recent
2000 character limit reached

On auto-equivalences and complete derived invariants of gentle algebras (1904.04859v1)

Published 9 Apr 2019 in math.RT and math.SG

Abstract: We study triangulated categories which can be modeled by an oriented marked surface $\mathcal{S}$ and a line field $\eta$ on $\mathcal{S}$. This includes bounded derived categories of gentle algebras and -- conjecturally -- all partially wrapped Fukaya categories introduced by Haiden-Katzarkov-Kontsevich. We show that triangle equivalences between such categories induce diffeomorphisms of the associated surfaces preserving orientation, marked points and line fields up to homotopy. This shows that the pair $(\mathcal{S}, \eta)$ is a triangle invariant of such categories and prove that it is a complete derived invariant for gentle algebras of arbitrary global dimension. We deduce that the group of auto-equivalences of a gentle algebra is an extension of the stabilizer subgroup of $\eta$ in the mapping class group and a group, which we describe explicitely in case of triangular gentle algebras. We show further that diffeomorphisms associated to spherical twists are Dehn twists.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.