Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-stability in Doubochinski's Pendulum (1904.02908v1)

Published 5 Apr 2019 in physics.class-ph

Abstract: The widespread phenomena of multistability is a problem involving rich dynamics to be explored. In this paper, we study the multistability of a generalized nonlinear forcing oscillator excited by $f(x)cos \omega t$. We take Doubochinski's Pendulum as an example. The so-called "amplitude quantization", i.e., the multiple discrete periodical solutions, is identified as self-adaptive subharmonic resonance in response to nonlinear feeding. The subharmonic resonance frequency is found related to the symmetry of the driving force: odd subharmonic resonance occurs under even symmetric driving force and vice versa. We solve the multiple periodical solutions and investigate the transition and competition between these multi-stable modes via frequency response curves and Poincare maps. We find the irreversible transition between the multistable modes and propose a multistability control strategy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.