Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Accelerating Deep Unsupervised Domain Adaptation with Transfer Channel Pruning (1904.02654v1)

Published 25 Mar 2019 in cs.LG and cs.CV

Abstract: Deep unsupervised domain adaptation (UDA) has recently received increasing attention from researchers. However, existing methods are computationally intensive due to the computation cost of Convolutional Neural Networks (CNN) adopted by most work. To date, there is no effective network compression method for accelerating these models. In this paper, we propose a unified Transfer Channel Pruning (TCP) approach for accelerating UDA models. TCP is capable of compressing the deep UDA model by pruning less important channels while simultaneously learning transferable features by reducing the cross-domain distribution divergence. Therefore, it reduces the impact of negative transfer and maintains competitive performance on the target task. To the best of our knowledge, TCP is the first approach that aims at accelerating deep UDA models. TCP is validated on two benchmark datasets-Office-31 and ImageCLEF-DA with two common backbone networks-VGG16 and ResNet50. Experimental results demonstrate that TCP achieves comparable or better classification accuracy than other comparison methods while significantly reducing the computational cost. To be more specific, in VGG16, we get even higher accuracy after pruning 26% floating point operations (FLOPs); in ResNet50, we also get higher accuracy on half of the tasks after pruning 12% FLOPs. We hope that TCP will open a new door for future research on accelerating transfer learning models.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.