Papers
Topics
Authors
Recent
2000 character limit reached

Entanglement Content of Quantum Particle Excitations III. Graph Partition Functions (1904.02615v1)

Published 4 Apr 2019 in math-ph, cond-mat.stat-mech, hep-th, math.MP, and quant-ph

Abstract: We consider two measures of entanglement, the logarithmic negativity and the entanglement entropy, between regions of space in excited states of many-body systems formed by a finite number of particle excitations. In parts I and II of the current series of papers, it has been shown in one-dimensional free-particle models that, in the limit of large system's and regions' sizes, the contribution from the particles is given by the entanglement of natural qubit states, representing the uniform distribution of particles in space. We show that the replica logarithmic negativity and R\'enyi entanglement entropy of such qubit states are equal to the partition functions of certain graphs, that encode the connectivity of the manifold induced by permutation twist fields. Using this new connection to graph theory, we provide a general proof, in the massive free boson model, that the qubit result holds in any dimensionality, and for any regions' shapes and connectivity. The proof is based on clustering and the permutation-twist exchange relations, and is potentially generalisable to other situations, such as lattice models, particle and hole excitations above generalised Gibbs ensembles, and interacting integrable models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.