An $\varepsilon$-regularity theorem for line bundle mean curvature flow
Abstract: In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given K\"ahler manifold. The goal of this paper is to give an $\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\varepsilon$-regularity theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.