Multi-reference Tacotron by Intercross Training for Style Disentangling,Transfer and Control in Speech Synthesis
Abstract: Speech style control and transfer techniques aim to enrich the diversity and expressiveness of synthesized speech. Existing approaches model all speech styles into one representation, lacking the ability to control a specific speech feature independently. To address this issue, we introduce a novel multi-reference structure to Tacotron and propose intercross training approach, which together ensure that each sub-encoder of the multi-reference encoder independently disentangles and controls a specific style. Experimental results show that our model is able to control and transfer desired speech styles individually.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.