Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extracting Tables from Documents using Conditional Generative Adversarial Networks and Genetic Algorithms

Published 3 Apr 2019 in cs.NE | (1904.01947v1)

Abstract: Extracting information from tables in documents presents a significant challenge in many industries and in academic research. Existing methods which take a bottom-up approach of integrating lines into cells and rows or columns neglect the available prior information relating to table structure. Our proposed method takes a top-down approach, first using a generative adversarial network to map a table image into a standardised `skeleton' table form denoting the approximate row and column borders without table content, then fitting renderings of candidate latent table structures to the skeleton structure using a distance measure optimised by a genetic algorithm.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.