2000 character limit reached
A spatial small-world graph arising from activity-based reinforcement (1904.01817v1)
Published 3 Apr 2019 in math.PR and cs.DM
Abstract: In the classical preferential attachment model, links form instantly to newly arriving nodes and do not change over time. We propose a hierarchical random graph model in a spatial setting, where such a time-variability arises from an activity-based reinforcement mechanism. We show that the reinforcement mechanism converges, and prove rigorously that the resulting random graph exhibits the small-world property. A further motivation for this random graph stems from modeling synaptic plasticity.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.