Papers
Topics
Authors
Recent
2000 character limit reached

BIRADS Features-Oriented Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis (1904.01076v1)

Published 1 Apr 2019 in physics.med-ph

Abstract: Breast ultrasound (US) is an effective imaging modality for breast cancer detection and diagnosis. US computer-aided diagnosis (CAD) systems have been developed for decades and have employed either conventional hand-crafted features or modern automatic deep-learned features, the former relying on clinical experience and the latter demanding large datasets. In this paper, we have developed a novel BIRADS-SDL network that integrates clinically-approved breast lesion characteristics (BIRADS features) into semi-supervised deep learning (SDL) to achieve accurate diagnoses with a small training dataset. Breast US images are converted to BIRADS-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of an SDL network, which performs unsupervised stacked convolutional auto-encoder (SCAE) image reconstruction guided by lesion classification. We trained the BIRADS-SDL network with an alternative learning strategy by balancing reconstruction error and classification label prediction error. We compared the performance of the BIRADS-SDL network with conventional SCAE and SDL methods that use the original images as inputs, as well as with an SCAE that use BFMs as inputs. Experimental results on two breast US datasets show that BIRADS-SDL ranked the best among the four networks, with classification accuracy around 92.00% and 83.90% on two datasets. These findings indicate that BIRADS-SDL could be promising for effective breast US lesion CAD using small datasets.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.