Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive sampling of time-space signals in a reproducing kernel subspace of mixed Lebesgue space

Published 1 Apr 2019 in cs.IT and math.IT | (1904.00727v1)

Abstract: The Mixed Lebesgue space is a suitable tool for modelling and measuring signals living in time-space domains. And sampling in such spaces plays an important role for processing high-dimensional time-varying signals. In this paper, we first define reproducing kernel subspaces of mixed Lebesgue spaces. Then, we study the frame properties and show that the reproducing kernel subspace has finite rate of innovation. Finally, we propose a semi-adaptive sampling scheme for time-space signals in a reproducing kernel subspace, where the sampling in time domain is conducted by a time encoding machine. Two kinds of timing sampling methods are considered and the corresponding iterative approximation algorithms with exponential convergence are given.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.