A new metric for statistical properties of long time behaviors (1903.12640v3)
Abstract: Let $(X,T)$ be a topological dynamical system with metric $d$. We define a new function $\overline{F}(x,y)=\limsup\limits_{n \to +\infty} \inf\limits_{\sigma \in S_n} \frac 1n \sum\limits_{k=1}n d(Tk x,T{\sigma(k)} y)$ by using permutation group $S_n$. It's shown $F(x,y)=\lim\limits_{n \to +\infty} \inf\limits_{\sigma \in S_n} \frac 1n \sum\limits_{k=1}n d(Tk x,T{\sigma(k)} y)$ exists when $x,y \in X$ are generic points. Applying this function, we prove $(X,T)$ is uniquely ergodic if and only if $\overline{F}(x,y)=0$ for any $x,y \in X$. The characterizations of ergodic measures and physical measures by $\overline{F}(x,y)$ are given. We introduce the notion of weak mean equicontinuity and prove that $(X,T)$ is weak mean equicontinuous if and only if the time averages $f{*}(x)=\lim\limits_{n \to +\infty}\frac 1n \sum\limits_{k=1}n f(Tk x)$ exist and are continuous for all $f \in C(X)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.