Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Large Deviations of Factor Models with Regularly-Varying Tails: Asymptotics and Efficient Estimation (1903.12299v3)

Published 28 Mar 2019 in math.ST and stat.TH

Abstract: We analyze the \textit{Large Deviation Probability (LDP)} of linear factor models generated from non-identically distributed components with \textit{regularly-varying} tails, a large subclass of heavy tailed distributions. An efficient sampling method for LDP estimation of this class is introduced and theoretically shown to exponentially outperform the crude Monte-Carlo estimator, in terms of the coverage probability and the confidence interval's length. The theoretical results are empirically validated through stochastic simulations on independent non-identically Pareto distributed factors. The proposed estimator is available as part of a more comprehensive \texttt{Betta} package.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube