On Hausdorff dimension of radial projections
Abstract: For any $x\in\mathbb{R}d$, $d\geq 2$, denote $\pix: \mathbb{R}d\backslash{x}\rightarrow S{d-1}$ as the radial projection $$\pix(y)=\frac{y-x}{|y-x|}. $$ Given a Borel set $E\subset{\Bbb R}d$, $\dim_{\mathcal{H}} E\leq d-1$, in this paper we investigate for how many $x\in \mathbb{R}d$ the radial projection $\pix$ preserves the Hausdorff dimension of $E$, namely whether $\dim_{\mathcal{H}}\pix(E)=\dim_{\mathcal{H}} E$. We develop a general framework to link $\pix(E)$, $x\in F$ and $\piy(F)$, $y\in E$, for any Borel set $F\subset\mathbb{R}d$. In particular, whether $\dim_{\mathcal{H}}\pix(E)=\dim_{\mathcal{H}}E$ for some $x\in F$ can be reduced to whether $F$ is visible from some $y\in E$ (i.e. $\mathcal{H}{d-1}(\piy(F))>0$). This allows us to apply Orponen's estimate on visibility to obtain $$\dim_{\mathcal{H}}\left{x\in\mathbb{R}d: \dim_{\mathcal{H}}\pix(E)<\dim_{\mathcal{H}}E\right}\leq 2(d-1)-\dim_{\mathcal{H}}E,$$ for any Borel set $E\subset{\Bbb R}d$, $\dim_{\mathcal{H}} E\in(d-2, d-1]$. This improves the Peres-Schlag bound when $\dim_{\mathcal{H}} E\in(d-\frac{3}{2}, d-1]$, and it is optimal at the endpoint $\dim_{\mathcal{H}} E=d-1$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.