Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Strong bound between trace distance and Hilbert-Schmidt distance for low-rank states (1903.11738v2)

Published 28 Mar 2019 in quant-ph, math-ph, and math.MP

Abstract: The trace distance between two quantum states, $\rho$ and $\sigma$, is an operationally meaningful quantity in quantum information theory. However, in general it is difficult to compute, involving the diagonalization of $\rho - \sigma$. In contrast, the Hilbert-Schmidt distance can be computed without diagonalization, although it is less operationally significant. Here, we relate the trace distance and the Hilbert-Schmidt distance with a bound that is particularly strong when either $\rho$ or $\sigma$ is low rank. Our bound is stronger than the bound one could obtain via the norm equivalence of the Frobenius and trace norms. We also consider bounds that are useful not only for low-rank states but also for low-entropy states. Our results have relevance to quantum information theory, quantum algorithms design, and quantum complexity theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.