Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimization of Inf-Convolution Regularized Nonconvex Composite Problems (1903.11690v1)

Published 27 Mar 2019 in math.OC, cs.AI, and cs.LG

Abstract: In this work, we consider nonconvex composite problems that involve inf-convolution with a Legendre function, which gives rise to an anisotropic generalization of the proximal mapping and Moreau-envelope. In a convex setting such problems can be solved via alternating minimization of a splitting formulation, where the consensus constraint is penalized with a Legendre function. In contrast, for nonconvex models it is in general unclear that this approach yields stationary points to the infimal convolution problem. To this end we analytically investigate local regularity properties of the Moreau-envelope function under prox-regularity, which allows us to establish the equivalence between stationary points of the splitting model and the original inf-convolution model. We apply our theory to characterize stationary points of the penalty objective, which is minimized by the elastic averaging SGD (EASGD) method for distributed training. Numerically, we demonstrate the practical relevance of the proposed approach on the important task of distributed training of deep neural networks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.