Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes

Published 24 Mar 2019 in math.GT, math.CO, and math.DS | (1903.10904v1)

Abstract: We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.